
This space is reserved for the Procedia header, do not use it

High Performance LDA through Collective Model Data

Communication Optimization

Bingjing Zhang1, Bo Peng1,2, and Judy Qiu1

1 Indiana University, Bloomington, Indiana, USA
{zhangbj,pengb,xqiu}@indiana.edu
2 Peking University, Beijing, China

Abstract
LDA is a widely used machine learning technique for big data analysis. The application includes
an inference algorithm that iteratively updates on the model data until convergence. A major
challenge is the scaling issue in parallelization owing to the fact that the size of model data
is huge and parallel workers need to communicate with them continually. We identify three
important features of the model data in parallel LDA computation: 1. The volume of model
data required for local computation is high; 2. The time complexity of local computation is
proportional to the size of required model data; 3. The size of model data size shrinks as it
converges. By investigating collective and asynchronous communication methods of model data
in different tools, we discovered that optimized collective communication can improve the model
update speed, thus allowing the model to converge faster. The performance improvement derives
not only from accelerated communication but also from the reduced iteration computation
time as the model data size shrinks during the model convergence. To foster fast convergence,
we design new collective communication abstractions, ”lda-lgs” and lda-rtt”, for model data
communication, and implement Harp-LDA. We compare our new approach with Yahoo! LDA
and Petuum LDA, two leading implementations favoring asynchronous communication methods
in the field, on a 100-node, 4000-thread Intel Haswell cluster. The experiments show that “lda-
lgs” can reach higher model likelihood with shorter or similar execution time compared with
Yahoo! LDA, while “lda-rtt” can run up to 3.9 times faster compared with Petuum LDA when
achieving similar model likelihood.

Keywords: Parallel Computing, LDA, Big Model Data, Communication Optimization

1 Introduction

Latent Dirichlet Allocation (LDA) [9] is an essential machine learning technique that has
been widely used in areas such as text mining, advertising, recommender systems, network anal-
ysis, and genetics. Though extensive research on this topic exists, the data analysis community
is still endeavoring to scale it to web-scale corpora to explore more subtle semantics with a big
model which may contain billions of model parameters [12].

1

High Performance LDA through Collective Model Data Communication Optimization Zhang, Peng and Qiu

We identify that the size of model data required for the local computation is so large that
sending such huge data to every worker results in communication bottlenecks. The computation
also takes a long time for the large model data size. In addition, the model data size shrinks as
the model converges. As a result, a faster model data communication method can speed up the
model convergence, in which the model size shrinks and thereby the iteration execution time
reduces.

By guaranteeing the algorithm correctness, various model data communication strategies
are developed in parallel LDA. Existing solutions favor asynchronous communication methods,
since it not only avoids global waiting, but also quickly makes the model update visible to other
workers and thereby boosts the model convergence. We propose a more efficient approach
in which the model data communication speed is improved upon with optimized collective
communication methods. We abstract three new communication operations and implement
them on top of Harp [22]. We utilize two Harp-LDA applications and compare them with
Yahoo! LDA [8] and Petuum LDA [4], two well-known implementations in the domain. This is
done on three datasets each with a total of 10 billion model parameters. The results on a 100-
node, 4000-thread cluster show that collective communication optimizations can significantly
reduce communication overhead and improve model convergence speed.

The following sections describe: LDA modeling and CGS algorithm (Section 2), big model
data problem in parallel LDA (Section 3), the communication challenges of LDA model data
(Section 4), Harp-LDA implementations (Section 5) performance results and comparisons (Sec-
tion 6), and conclusions (Section 7).

2 Background

LDA modeling techniques can find the latent structures inside data which are abstracted
as a collection of documents, each with a bag of words. It models each document as a mixture
of latent topics, and each topic as a multinomial distribution over words. Then an inference
algorithm works iteratively on the data until convergence and outputs the most likely topic
assignments for the data. (see Fig. 1(a)). Similar to Singular Value Decomposition (SVD) (see
Fig. 1(b)), LDA can be also viewed as a sparse matrix decomposition technique on the training
data as a word-document matrix. But it roots on a probabilistic foundation and has totally
different computation characteristics.

Among the inference algorithms for LDA, Collapsed Gibbs Sampling (CGS) [19] shows
high scalability in parallelization [11, 18], especially compared with another commonly used
algorithm, Collapsed Variational Bayes (CVB) [9, 3, 6]. CGS is a Markov chain Monte Carlo
(MCMC) type algorithm. In the “initialize” phase, each training data point, or token, is
assigned to a random topic denoted as zij . Then it begins to reassign topics to each token
xij = w by sampling from a multinomial distribution of a conditional probability of zij :

p
(
zij = k | z¬ij , x, α, β

)
∝

N¬ijwk + β∑
wN

¬ij
wk + V β

(
M¬ijkj + α

)
(1)

Here superscript ¬ij means that the corresponding token is excluded. V is vocabulary size.
Nwk is the token count of word w assigned to topic k in K topics, and Mkj is the token count
of topic k assigned in document j. The matrices, Zij , Nwk and Mkj , are the model data.
Hyper parameters α and β control the topic density in the final model output. The model data
gradually converge in the process of iterative sampling. This is the phase where the “burn-in”
occurs and finally reaches “stationary”.

2

High Performance LDA through Collective Model Data Communication Optimization Zhang, Peng and Qiu

z1,1

zi,j

zi,1

Document Collection Topic assignment

x1,1

xi,j

xi,1

K*D

j

V*D

w

word-doc matrix

V*K

w

Nwkword-topic matrix

≈ ×

j

Mkjtopic-doc matrix

(a) (b)

Figure 1: (a) Topics Discovery (b) View of Matrix Decomposition

The sampling performance is more memory bounded than computation bounded, since the
computation itself is simple and mainly relies on accessing two large sparse model matrices in
memory. In Algorithm. 1, sampling occurs by the column order on the word-document matrix,
called “sample by document”. Although Mkj can be cached when sampling all the tokens in
a document j, the memory access to Nwk is random since tokens are from different words.
Symmetrically, sampling can run by “sample by word”. In both cases, the computation com-
plexity is highly related to the model data size. SparseLDA [21] is an optimized CGS sampling
implementation mostly used in the state-of-the-art LDA trainers. In Line 10 of Algorithm. 1,
the conditional probability is usually computed for each k with total K times, but SparseLDA
decreases the complexity to the number of non-zero items in Nwk and Mkj , which can be much
smaller than K on average.

Algorithm 1: LDA Collapsed Gibbs Sampling Algorithm

input : training data X, topic count K, hyperparamters α, β
output: topic assignment matrix Zij , topic-document matrix Mkj , word-topic matrix Nwk
1 Initialize Mkj , Nwk to zeros // Initialize phase

2 foreach document j ∈ [1, D] do
3 foreach token position i in document j do
4 zi,j = k ∼Mult(1

K) // sample topics by multinomial distribution

5 mk,j += 1;nw,k += 1 // token xi,j is word w, update the model matrices

// Burn-in and Stationary phase

6 repeat
7 foreach document j ∈ [1, D] do
8 foreach token position i in document j do
9 mk,j −= 1;nw,k −= 1 // decrease counts

10 zi,j = k′ ∼ p(zi,j = k|rest) // sample a new topic by Eq.(1)

11 mk′,j += 1;nw,k′ += 1 // increase counts for the new topic

12 until convergence;

3 Big Model Data Problem in Parallel LDA

Sampling on Zij in CGS is a strict sequential procedure, although it can be parallelized
without much loss in accuracy [11]. Parallel LDA can be performed in a distributed environment
or a shared-memory environment. Because of the huge volume of the training documents, we
focused on the distributed environment which is formed by a number of compute nodes deployed
with a single worker process apience. Here every worker takes a partition of the training

3

High Performance LDA through Collective Model Data Communication Optimization Zhang, Peng and Qiu

document set and performs the sampling procedure with multiple threads. The workers either
communicate through point-to-point communication or collective communication.

LDA model data contains four parts: I. Zij - topic assignments on tokens, II. Nwk - token
counts of words on topics (word-topic matrix), III. Mkj - token counts of documents on topics
(document-topic matrix), and IV.

∑
wNwk - token counts of topics. Here Zij is always stored

along with the training tokens. For the other three, because the training tokens are partitioned
by document, Mkj is stored locally, while Nwk and

∑
wNwk are shared. For the shared model

data, a parallel LDA implementation may use the “latest model” or a “stale model” in the
sampling procedure. “Latest model” means the current model used in computation is up-to-
date and not modified simultaneously by other workers, while “stale model” means the model
values are old. The consistency of the model data is important to the convergence speed.

Now we calculate the size of Nwk, a huge but sparse V ∗ K matrix. Note that the word
distribution in the training data generally follows the power-law. If we sort the words based on
their frequencies from high to low, for a word with rank i, its frequency is freq(i) = C ∗ i−λ.
Then for the size of training tokens W , we have

W =

V∑
i=1

(freq(i))) =

V∑
i=1

(C ∗ i−λ) ≈ C ∗ (ln(V) + γ +
1

2V
) (2)

Here λ is a constant near 1, constant C = freq(1). To simplify the analysis, we consider λ = 1.
Then W is the partial sum of harmonic series which have logarithmic growth, where γ is the
Euler-Mascheroni constant ≈ 0.57721. The actual model size depends on the non-zero cell count
of the matrix (denoted as S). In the “initialize” phase of CGS, with random topic assignment,
a word i gets max(K, freq(i)) non-zero cells. If freq(J) = K, then J = C/K, and we get:

Sinit =

J∑
i=1

K +

V∑
i=J+1

freq(i) = W −
J∑
i=1

freq(i) +

J∑
i=1

K = C ∗ (lnV + lnK − lnC + 1) (3)

The actual initial model size Sinit is logarithmic to matrix size V ∗K, so S << V ∗K. However
this does not mean Sinit is small. Since C can be very large, even C ∗ ln(V ∗ K) can result
in a large number. But in the progress of iterations, the model data size shrinks as the model
converges. When a stationary state is reached, the average number of topics per word drops to
a certain small constant ratio of K, which is determined by the concentration parameters α, β
and the nature of the training data itself.

The local vocabulary size V ′ on each worker determines the model data volume required for
computation. When documents are randomly partitioned to N processes, every word with a
frequency larger than N gets a high probability to occur on all the processes. If freq(L) = N at
rank L, we get: L = W

(lnV+γ)∗N . For a large training dataset, the ratio between L and V is often

very high. This means the local computation requires most of the model data. Fig. 2 shows
the difficulty of controlling the local vocabulary size in random document partitioning. When
10 times more partitions are introduced, there is only a sub-linear decrease of the vocabulary
size per partition. Taking “clueweb” and “enwiki” datasets as examples (the contents of these
datasets are discussed in Section 6), in “clueweb” each partition gets 92.5% of V when the
training documents are randomly split into 128 partitions. “enwiki” is around 12 times smaller
than “clueweb”. It gets 90% of V with 8 partitions, keeping a similar ratio. In summary, though
the local model data size reduces as the number of compute nodes grows, the percentage is quite
high in many situations.

4

High Performance LDA through Collective Model Data Communication Optimization Zhang, Peng and Qiu

100 101 102 103 104 105 106 107

Word Rank

100

101

102

103

104

105

106

107

108

109

1010
W

or
d

Fr
eq

ue
nc

y

clueweb
y= 109. 9x−0. 9

enwiki
y= 107. 4x−0. 8

100 101 102 103 104

Document Collection Partition Number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

V
oc

ab
ul

ar
y

Si
ze

 o
f P

ar
tit

io
n

(%
)

clueweb
enwiki

(a) (b)

Figure 2: (a) Zipf’s Law of the word frequencies (b) Vocabulary Size vs. Document Partitioning

4 Communication Challenges of LDA Model Data
The analysis in the previous sections shows three properties of the big LDA model data:

1. The initial model size is huge but reduces as the model data converges; 2. The model data
required in local computation is a high percentage of all the model data; 3. The local com-
putation time is related to the local model size. All these indicate model data communication
optimization is necessary because it can accelerate the process of model update and results in
a huge benefit to computation and communication in later iterations. Of the various communi-
cation methods used in the state-of-the-art implementations, we summarize them all into two
communication models (see Fig. 3(a)).

In Communication Model A, the computation occurs on stale model data. Before performing
the sampling procedure, workers fetch the related model data to local. After the computation,
they send updates back to the model data. There are many models in this category. In
A1, without holding a shared model data, it synchronizes local models through “allreduce”
operation. PLDA [17] follows this model. “allreduce” is routing optimized, but it communicate
model data without consideration of the model data requirement in the local computation,
causing high memory usage and high communication load. In A2, model data are just fetched
and returned directly in a collective way. PowerGraph follows this model [13, 5]. Though it
sends less data compared with A1, the performance is low for lack of routing optimization. A
more popular model is A3, which uses asynchronous point-to-point communication. Yahoo!
LDA [20, 10] and Parameter Server [14] follow this model. Here each worker independently
fetches and updates the related model data without waiting for other workers. This model can
ease the communication overhead. However, its model update rate is not guaranteed. The
number of updates on the model data per iteration varies so that a word’s model data may
be updated by either model changes from all the training tokens, a part of them, or even no
change. A solution to this problem is to combine A3 and A2. This is implemented in Petuum
(version 0.93) LDA [15].

In Communication Model B, each worker first takes a partition of the model data after which
the model is “shifted” between workers. When all the partitions are accessed by all the workers,
an iteration is completed. There is only one model B1 which uses asynchronous point-to-point
communication. Petuum(version 1.1) LDA [16, 4] follows this model.

A better solution for Communication Model A can be a conjunction of A1 and A2 with
new collective communication abstractions. There are three advantages to such a strategy.

5

High Performance LDA through Collective Model Data Communication Optimization Zhang, Peng and Qiu

Model

Worker Worker Worker

• Stale model
• A1. Allreduce collective
- PLDA
A2. Unoptimized collective
- PowerGraph
A3. Point-to-point

(asynchronous)
- Yahoo! LDA

Communication Model B

Communication Model A

Worker Worker Worker

Model 1 Model 2 Model 3

• Latest model
• B1. Point-to-point

(asynchronous)
- Petuum LDA Training Data

1 Load

WorkerWorkerWorker

Sync

4

Model
2

Compute

2

Model
3

Compute

2

Model
1

Compute

2

33 SyncSync3

Iteration

Local
Model

Local
Model

Local
Model

WorkerWorkerWorker

Rotate

Model
2

Compute

2

Model
3

Compute

2

Model
1

Compute

2

33 RotateRotate3

lda-lgs
(use syncLocalWithGlobal
& syncGlobalWithLocal)

lda-rtt
(use rotateGlobal)

(a) (b)

Figure 3: (a) Communication Models (b) Harp-LDA Implementations

First, considering the model data requirement in local computation, it reduces the data com-
municated. And second, it optimizes routing through searching “one-to-all” communication
patterns. Finally it maintains the model update rate compared with asynchronous methods.
For Communication Model B, using collective communication is also helpful because it max-
imizes bandwidth usage between compute modes and avoids flooding the network with small
messages, which is what B1 does.

5 Harp-LDA Implementations
Based on the analysis above, we parallelize LDA with optimized collective communication

abstractions. We use “table” abstraction defined in Harp [22] to organize the shared model
data. Each table may contain one or more model data partitions, and the tables defined on
different processes are associated in order to manage a distributed model dataset. We partition
the model data based on the range of word frequencies in the training dataset. The lower the
frequency of the word, the higher the partition ID given. Then we map partition IDs to process
IDs based on the modulo operation. In this way, each process contains model data partitions
with words whose frequencies rank from high to low.

We add three collective communication operations. The first two operations, “syncGlobal-
WithLocal” and “syncLocalWithGlobal”, are paired. Here another type of table is defined to
describe the local model data. Each partition in these tables is considered a local version of a
global partition according to the corresponding ID. “syncGlobalWithLocal” merges partitions
from different local model data tables to one in the global tables while “syncLocalWithGlobal”
redistributes the partitions in the global model data tables to local tables. Lastly, “rotate-
Global” considers processes in a ring topology and shifts the partitions in the model data table
from one process to the next neighbor.

We present two parallel LDA implementations. One is “lgs”, which uses “syncGlobalWith-
Local” paired with “syncLocalWithGlobal”. Another is “rtt”, which uses “rotateGlobal” (see
Fig. 3(b)). In both implementations, the computation and the communication are pipelined,
i.e., the model data is sliced in two and communicated in turns. Model Data Part IV is synchro-
nized through A1 at the end of every iteration. SparseLDA algorithm is used for the sampling
procedure. “lgs” samples by document while “rtt” samples by word. This is done to keep the
consistency between implementations for unbiased communication performance comparisons in
future experiments.

6

High Performance LDA through Collective Model Data Communication Optimization Zhang, Peng and Qiu

6 Experiments

Experiments are done on a cluster [2] with Intel Haswell architecture. This cluster contains
32 nodes each with two 18-core 36-thread Xeon E5-2699 processors and 96 nodes each with
two 12-core 24-thread Xeon E5-2670 processors. All the nodes have 128GB memory and are
connected with 1Gbps Ethernet (eth) and Infiniband (ib). For testing, 31 nodes with Xeon
E5-2699 and 69 nodes with Xeon E5-2670 are used to form a cluster of 100 nodes each with 40
threads. All the tests are done with Infiniband through IPoIB support.

Several datasets are used (see Table 1). The model data settings are comparable to other
research work [12], each with a total of 10 billion parameters. α and β are both fixed to a
common used value 0.01 to exclude dynamic tuning. We test several implementations: “lgs”,
“lgs-4s” (“lgs” with 4 rounds of model synchronization per iteration, each round with 1/4
of the training tokens) and “rtt”. To evaluate the quality of the model results, we use the
model data likelihood on the training dataset to monitor the model convergence. We compare
our implementations with two leading implementations, Yahoo! LDA and Petuum LDA, and
thereby learn how the communication methods affect LDA performance by studying the model
convergence speed.

Dataset Num. of Num. of Vocabulary Doc Len. Num. of Init. Model
Docs Tokens AVG/STD Topics Size

clueweb 50.5M 12.4B 1M 224/352 10K 14.7GB
enwiki 3.8M 1.1B 1M 293/523 10K 2.0GB
bi-gram 3.9M 1.7B 20M 434/776 500 5.9GB
Both “enwiki” and “bi-gram” are English articles from Wikipedia [7].
“clueweb” is 10% of ClueWeb09 which is a collection of English web pages [1].

Table 1: Training Data Settings in the Experiments

6.1 Model Convergence Speed on Iteration

We compare the model convergence speed by analyzing model outputs on Iteration 1, 10,
20... 200. In one iteration, every training token is sampled once. Thus the number of model
updates in each iteration is equal. Then we see how the model converges with the same amount
of model updates.

On “clueweb” (see Fig. 4(a)), Petuum has the highest model likelihood on all the iterations.
Due to “rtt”’s preference of using stale thread-local data in multi-thread sampling, the conver-
gence speed is slower. The lines of “rtt” and “lgs” are overlapped for their similar convergence
speeds. In contrast to “lgs”, the convergence speed of “lgs-4s” is as high as Petuum. This
shows that increasing the model update rate improves the convergence speed. Yahoo! LDA
has the slowest convergence speed because asynchronous communication did not guarantee all
the model updates were seen in each iteration. On “enwiki” (see Fig. 4(b)), as before, Petuum
achieves the highest accuracy out of all iterations. “rtt” converges to the same model likeli-
hood level as Petuum at iteration 200. “lgs” demonstrates slower convergence speed but still
achieves high model likelihood, while Yahoo! LDA has both the slowest convergence speed and
the lowest model likelihood at iteration 200.

These results match with our previous analysis. Though the number of model updates is
the same, an implementation using stale model data converges slower than one using the latest
model. For those using stale model data, “lgs-4s” is faster than “lgs” while “lgs” is faster
than Yahoo! LDA. This means by increasing the model update rate, the model data used in
computation is newer, and the convergence speed is improved.

7

High Performance LDA through Collective Model Data Communication Optimization Zhang, Peng and Qiu

0 50 100 150 200
Iteration Number

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5
M

od
el

 L
ik

el
ih

oo
d

1e11

lgs
Yahoo!LDA
rtt
Petuum
lgs-4s

0 50 100 150 200
Iteration Number

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e10

lgs
Yahoo!LDA
rtt
Petuum

(a) (b)

Figure 4: (a) Model Convergence Speed on “clueweb” (b) Model Convergence Speed on “enwiki”

6.2 Model Convergence Speed on Elapsed Time

We first compare the execution speed between “lgs” and Yahoo! LDA. On “clueweb”, we
show the convergence speed based on the elapsed execution time (see Fig. 5(a)). Yahoo! LDA
takes more time to finish Iteration 1 due to its slow model initialization, which demonstrates
it has a sizable overhead on the communication end. In later iterations, while “lgs” converges
faster, Yahoo! LDA catches up after 30 iterations. This observation could be explained by our
slower computation speed. To counteract the computation overhead, we increase the number
of model synchronization per iteration to four. Thus the computation overhead is reduced by
using a newer and smaller model. Although the execution time for “lgs-4s” is still slightly longer
than Yahoo! LDA, it obtains higher model likelihood and maintains faster convergence speed
in the whole execution.

Similar results are shown on “enwiki”, but this time “lgs” not only achieves higher model
likelihood but also had faster model convergence speed throughout the whole execution (see Fig.
5(c)). From both experiments, we learn that though the computation was slow in “lgs”, with
collective communication optimization, the model size quickly shrinks so that its computation
time is reduced significantly. At the same, although Yahoo! LDA does not have any extra
overhead other than computation in each iteration, its iteration execution time reduces slowly
because it keeps computing with an older model (see Fig. 5(b)(d)).

Next we compare “rtt” and Petuum LDA on “clueweb”and “bi-gram”. On “clueweb”, both
sides’ execution times and the model likelihood achieved are similar (see Fig. 5(c)). Both are
around 2.7 times faster than the results in “lgs” and Yahoo! LDA. This is because they use
the latest model data for sampling, and using “sample by word” leads to better performance.
Though “rtt” has higher computation time compared with Petuum LDA, the communication
overhead per iteration is lower. When the execution arrives at the final few iterations, while
computation time per iteration in “rtt” is still higher, the whole execution time per iteration
becomes lower ((see Fig. 5(f)(g)(h))). This is because Petuum communicates each word’s
model data in small messages and generates high overhead. On “bi-gram”, the results show
that Petuum does not perform well when the number of words in the model data increases. The
high overhead in communication causes the convergence speed to be very slow, and Petuum
cannot even continue executing after 60 iterations due to a memory outage (see Fig. 5(d)). Fig.
5(j)(k)(l) shows this performance difference on communication.

8

High Performance LDA through Collective Model Data Communication Optimization Zhang, Peng and Qiu

0 5000 10000 15000 20000 25000
Execution Time (s)

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d
1e11

lgs
Yahoo!LDA
lgs-4s

0 5000 10000 15000 20000 25000
Execution Time (s)

0

100

200

300

400

500

600

700

800

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

lgs-iter
Yahoo!LDA-iter
lgs-4s-iter

0 500 1000 1500 2000 2500 3000 3500
Execution Time (s)

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e10

lgs
Yahoo!LDA

0 500 1000 1500 2000 2500 3000 3500
Execution Time (s)

0

10

20

30

40

50

60

70

80

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

lgs-iter
Yahoo!LDA-iter

(a) (b) (c) (d)

0 1000 2000 3000 4000 5000 6000 7000 8000
Execution Time (s)

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

M
od

el
 L

ik
el

ih
oo

d

1e11

rtt
Petuum

1 2 3 4 5 6 7 8 9 10
Iteration

0

50

100

150

200

250

300

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

181

131
121 116 112

106
100

92
85 80

57

23
21

18 19
18

17
18

16
15

59 54 52 50 48 44 42 39 36 35

33
30 28 32

29 29 31 29 30 26

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

191 192 193 194 195 196 197 198 199 200
Iteration

0

5

10

15

20

25

30

35

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

23 23 23 23 23 23 23 23 23 23

3
3 3

2
3 3 3 2 3 3

19 19 19 19 19 19 19 19 19 19

10
10

10
11

9 10 9 9 10 10

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

0 1000 2000 3000 4000 5000 6000 7000
Execution Time (s)

0

50

100

150

200

250

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(e) (f) (g) (h)

0 1000 2000 3000 4000 5000 6000
Execution Time (s)

2.4

2.3

2.2

2.1

2.0

1.9

1.8

1.7

M
od

el
 L

ik
el

ih
oo

d

1e10

rtt
Petuum

1 2 3 4 5 6 7 8 9 10
Iteration

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

28

16
12 11 10 9 8 7 7 6

71

38

31
29

36 36

27
25 25 25

7 7 7 7 6 6 6 6 6 6

110

87
84

82 81
86 86 85

102

84

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

53 54 55 56 57 58 59 60 61 62
Iteration

0

20

40

60

80

100

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

4 4 4 4 4 4 4 4 4 4

19 20 21 21 19 19 19 19 19 20

6 6 6 6 6 6 6 6 6 6

82
86 86

84 86
81

86 87
83

88

rtt-compute
rtt-overhead
Petuum-compute
Petuum-overhead

0 1000 2000 3000 4000 5000 6000
Execution Time (s)

0

20

40

60

80

100

120

E
xe

cu
tio

nT
im

e
Pe

r
It

er
at

io
n

(s
)

rtt-compute
rtt-iter
Petuum-compute
Petuum-iter

(i) (j) (k) (l)

Figure 5: (a) Model Likelihood vs. Elapsed Time on “clueweb” (b) Iteration Time vs. Elapsed Time on
“clueweb” (c) Model Likelihood vs. Elapsed Time on “enwiki” (d) Iteration Time vs. Elapsed Time on “enwiki”
(e) Model Likelihood vs. Elapsed Time on “clueweb” (f) First 10 Iteration Times on “clueweb” (g) Final 10
Iteration Times on “clueweb” (h) Iteration Time vs. Elapsed Time on “clueweb” (i) Model Likelihood vs.
Elapsed Time on “bi-gram” (j) First 10 Iteration Times on “bi-gram” (k) Final 10 Iteration Times on “bi-gram”
(l) Iteration Time vs. Elapsed Time on “bi-gram”

7 Conclusion

Through the analysis on the LDA model data, we identify three model data properties in
parallel LDA computation: 1. The model data requirement in local computation is high; 2.
The time complexity of local sampling is related to the required model data size; 3. The model
data size shrinks as it converges. These properties suggest that using collective communication
optimizations can improve the model update speed, which allows the model to converge faster.
When the model converges quickly, the model data shrinks greatly and the iteration execution
time also reduces. We show that optimized collective communication methods perform better
than asynchronous methods in parallel LDA. “lgs” results in faster model convergence and
higher model likelihood at iteration 200 compared to Yahoo! LDA. On “bi-gram”, “rtt” shows
significantly lower communication overhead than Petuum LDA, and the total execution time of
“rtt” is 3.9 times faster. On “clueweb”, although the computation speed of the first iteration
is 2- to 3-fold slower, the total execution time remains similar.

Despite the implementation differences between “rtt”, “lgs”, Yahoo! LDA, and Petuum
LDA, the advantages of collective communication methods are evident. Compared with asyn-
chronous communication methods, collective communication methods can optimize routing
between parallel workers and maximize bandwidth utilization. Though a collective communi-
cation will result in global waiting, the resulting overhead is not as high as speculated. The
chain reaction set off by improving the LDA model update speed amplifies the benefits of using

9

High Performance LDA through Collective Model Data Communication Optimization Zhang, Peng and Qiu

collective communication methods.
In future work, we will focus on improving intra-node LDA performance in many-core sys-

tems, and apply our model data communication strategies to other machine learning algorithms
facing big model data problems.

Acknowledgments

We gratefully acknowledge support from Intel Parallel Computing Center (IPCC) Grant,
NSF 1443054 CIF21 DIBBs 1443054 Grant, and NSF OCI 1149432 CAREER Grant. We
appreciate the system support offered by FutureSystems.

References
[1] Clueweb. http://lemurproject.org/clueweb09.php/.

[2] FutureSystems. https://portal.futuresystems.org.

[3] Mahout LDA. https://mahout.apache.org/users/clustering/latent-dirichlet-allocatio
n.html.

[4] Petuum LDA. https://github.com/petuum/bosen/wiki/Latent-Dirichlet-Allocation.

[5] PowerGraph LDA. https://github.com/dato-code/PowerGraph/blob/master/toolkits/topic
_modeling/topic_modeling.dox.

[6] Spark LDA. http://spark.apache.org/docs/latest/mllib-clustering.html.

[7] Wikipedia. https://www.wikipedia.org.

[8] Yahoo! LDA. https://github.com/sudar/Yahoo_LDA.

[9] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. The Journal of Machine Learning
Research, 3:993–1022, 2003.

[10] A. Ahmed et al. Scalable Inference in Latent Variable Models. In WSDM, 2012.

[11] D. Newman et al. Distributed Algorithms for Topic Models. The Journal of Machine Learning
Research, 10:1801–1828, 2009.

[12] E. Xing et al. Petuum: A New Platform for Distributed Machine Learning on Big Data. In KDD,
2015.

[13] J. Gonzalez et al. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In
OSDI, 2012.

[14] M. Li et al. Scaling Distributed Machine Learning with the Parameter Server. In OSDI, 2014.

[15] Q. Ho et al. More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server.
In NIPS, 2013.

[16] S. Lee et al. On Model Parallelization and Scheduling Strategies for Distributed Machine Learning.
In NIPS, 2014.

[17] Y. Wang et al. PLDA: Parallel Latent Dirichlet Allocation for Large-scale Applications. In
Algorithmic Aspects in Information and Management, pages 301–314. Springer, 2009.

[18] Y. Wang et al. Peacock: Learning Long-Tail Topic Features for Industrial Applications. ACM
Transactions on Intelligent Systems and Technology, 6(4), 2015.

[19] P. Resnik and E. Hardist. Gibbs Sampling for the Uninitiated. Technical report, University of
Maryland, 2010.

[20] A. Smola and S. Narayanamurthy. An Architecture for Parallel Topic Models. Proceedings of the
VLDB Endowment, 3(1-2):703–710, 2010.

[21] L. Yao, D. Mimno, and A. McCallum. Efficient Methods for Topic Model Inference on Streaming
Document Collections. In KDD, 2009.

[22] B. Zhang, Y. Ruan, and J. Qiu. Harp: Collective Communication on Hadoop. In IC2E, 2014.

10

http://lemurproject.org/clueweb09.php/
https://portal.futuresystems.org
https://mahout.apache.org/users/clustering/latent-dirichlet-allocation.html
https://mahout.apache.org/users/clustering/latent-dirichlet-allocation.html
https://github.com/petuum/bosen/wiki/Latent-Dirichlet-Allocation
https://github.com/dato-code/PowerGraph/blob/master/toolkits/topic_modeling/topic_modeling.dox
https://github.com/dato-code/PowerGraph/blob/master/toolkits/topic_modeling/topic_modeling.dox
http://spark.apache.org/docs/latest/mllib-clustering.html
https://www.wikipedia.org
https://github.com/sudar/Yahoo_LDA

	Introduction
	Background
	Big Model Data Problem in Parallel LDA
	Communication Challenges of LDA Model Data
	Harp-LDA Implementations
	Experiments
	Model Convergence Speed on Iteration
	Model Convergence Speed on Elapsed Time

	Conclusion

